资源类型

期刊论文 1387

年份

2024 3

2023 200

2022 197

2021 212

2020 115

2019 48

2018 41

2017 62

2016 46

2015 47

2014 53

2013 59

2012 33

2011 30

2010 51

2009 47

2008 27

2007 44

2006 10

2005 5

展开 ︾

关键词

SARS-CoV-2 7

微波散射计 5

COVID-19 4

Cu(In 4

HY-2 4

碳中和 4

肠道菌群 4

2型糖尿病 3

GPS 3

Ga)Se2 3

HY-2 卫星 3

HY-2A卫星 3

光催化 3

微波辐射计 3

微波遥感 3

CCS 2

CO2利用 2

CO2封存 2

CO2捕集 2

展开 ︾

检索范围:

排序: 展示方式:

Cu-doped Bi/Bi<sub>2sub>WO<sub>6sub> catalysts for efficient N<sub>2sub> fixation by photocatalysis

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1412-1422 doi: 10.1007/s11705-023-2312-1

摘要: In this paper, Cu-doped Bi2WO6 was synthesized via a solvothermal method and applied it in photocatalytic N2 immobilization. Characterization results showed the presence of a small amount of metallic Bi in the photocatalyst, indicating that the synthesized photocatalyst is actually Bi/Cu-Bi2WO6 composite. The doped Cu had a valence state of +2 and most likely substituted the position of Bi3+. The introduced Cu did not affect the metallic Bi content, but mainly influenced the energy band structure of Bi2WO6. The band gap was slightly narrowed, the conduction band was elevated, and the work function was reduced. The reduced work function improved the transfer and separation of charge carriers, which mainly caused the increased photoactivity. The optimized NH3 generation rates of Bi/Cu-Bi2WO6 reached 624 and 243 μmol·L–1·g–1·h–1 under simulated solar and visible light, and these values were approximately 2.8 and 5.9 times higher those of Bi/Bi2WO6, respectively. This research provides a method for improving the photocatalytic N2 fixation and may provide more information on the design and preparation of heteroatom-doped semiconductor photocatalysts for N2-to-NH3 conversion.

关键词: Bi2WO6     Cu doping     work function     photocatalytic N2 fixation     charge separation    

Fabrication of highly efficient Bi

Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1344-8

摘要: Abstract • A novel Bi2WO6/CuS composite was fabricated by a facile solvothermal method. • This composite efficiently removed organic pollutants and Cr(VI) by photocatalysis. • The DOM could promoted synchronous removal of organic pollutants and Cr(VI). • This composite could be applied at a wide pH range in photocatalytic reactions. • Possible photocatalytic mechanisms of organic pollutants and Cr(VI) were proposed. A visible-light-driven Bi2WO6/CuS p-n heterojunction was fabricated using an easy solvothermal method. The Bi2WO6/CuS exhibited high photocatalytic activity in a mixed system containing rhodamine B (RhB), tetracycline hydrochloride (TCH), and Cr (VI) under natural conditions. Approximately 98.8% of the RhB (10 mg/L), 87.6% of the TCH (10 mg/L) and 95.1% of the Cr(VI) (15 mg/L) were simultaneously removed from a mixed solution within 105 min. The removal efficiencies of TCH and Cr(VI) increased by 12.9% and 20.4%, respectively, in the mixed solution, compared with the single solutions. This is mainly ascribed to the simultaneous consumption electrons and holes, which increases the amount of excited electrons/holes and enhances the separation efficiency of photogenerated electrons and holes. Bi2WO6/CuS can be applied over a wide pH range (2–6) with strong photocatalytic activity for RhB, TCH and Cr(VI). Coexisiting dissolved organic matter in the solution significantly promoted the removal of TCH (from 74.7% to 87.2%) and Cr(VI) (from 75.7% to 99.9%) because it accelerated the separation of electrons and holes by consuming holes as an electron acceptor. Removal mechanisms of RhB, TCH, and Cr(VI) were proposed, Bi2WO6/CuS was formed into a p-n heterojunction to efficiently separate and transfer photoelectrons and holes so as to drive photocatalytic reactions. Specifically, when reducing pollutants (e.g., TCH) and oxidizing pollutants (e.g., Cr(VI)) coexist in wastewater, the p-n heterojunction in Bi2WO6/CuS acts as a “bridge” to shorten the electron transport and thus simultaneously increase the removal efficiencies of both types of pollutants.

关键词: Photocatalysis     Bi2WO6/CuS     Organic pollutants     Cr(VI)     Synergistic effect    

Morphology selective construction of

Maher Darwish, Ali Mohammadi, Navid Assi, Samer Abuzerr, Youssef Alahmad

《化学科学与工程前沿(英文)》 2020年 第14卷 第4期   页码 561-578 doi: 10.1007/s11705-019-1808-1

摘要: Controlled growth of Bi WO nanorods with exposed [0 0 1] facets and the fabrication of an Fe O -Bi WO magnetic composite by a microwave-assisted polyol process, were achieved in this study. The adsorptivity and photocatalytic performance of the composite toward sunset yellow dye degradation were greatly enhanced by the -cyclodextrin cavities on its surface, firmly anchored through a cetyltrimethylammonium bromide linkage. A series of examinations and characterizations were carried out to determine the influence of various factors on the morphological modulation-photocatalytic behavior of the pure Bi WO prior to final functionalization. Changing the pH of the precursor solution impacted the formation of 0D, 2D, and 3D structures; however, the presence of hexamethylenetetramine surfactant induced the development of 1D nanorod structure. A reasonable crystal growth mechanism was proposed to elucidate the formation process. Conversely, the mechanism of the activity enhancement of -cyclodextrin functionalized Fe O -Bi WO , compared to that of the non-functionalized samples, could be realized with the assistance of chemical trapping experiments on sunset yellow, and was confirmed on the colorless antibiotic (sulfamethoxazole). The high performance and durability of this composite can be attributed to the facet-dependent activity, large adsorption capacity due to inclusion interactions, enhanced visible light absorption, and efficient charge separation.

关键词: β-cyclodextrin     Bi2WO6     shape controlled     nanorod     sunset yellow    

Effective degradation of tetracycline by mesoporous Bi

Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU

《环境科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 211-218 doi: 10.1007/s11783-014-0753-y

摘要: Bi WO was synthesized with a hydrothermal method at different pHs and used for the degradation of tetracycline (TC) in water. The mesoporous Bi WO prepared at pH 1 (BWO-1) displayed the highest adsorption and degradation capacity to TC due to its large surface area and more efficient capacity to separate photogenerated electrons and holes. 97% of TC at 20 mg·L was removed by BWO-1 at 0.5 g·L after 120 min irradiation under simulated solar light. Only 31% of the total organic carbon (TOC) was removed after 360 min irradiation although the TC removal reached 100%, suggesting that TC was mainly transformed to intermediate products rather than completely mineralized. The intermediates were identified by high-performance liquid chromatography-time of flight-mass spectrometry (HPLC-TOF-MS) and possible photodegradation pathways were proposed.

关键词: Bi2WO6     hydrothermal synthesis     tetracycline (TC)     photocatalysis    

Piezocatalytic performance of FeO−BiMoO catalyst for dye degradation

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 716-725 doi: 10.1007/s11705-022-2265-9

摘要: A Fe2O3−Bi2MoO6 heterojunction was synthesized via a hydrothermal method. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, powder X-ray diffraction, Fourier transform infrared spectroscopy and ultra-violet−visible near-infrared spectrometry were performed to measure the structures, morphologies and optical properties of the as-prepared samples. The various factors that affected the piezocatalytic property of composite catalyst were studied. The highest rhodamine B degradation rate of 96.6% was attained on the 3% Fe2O3−Bi2MoO6 composite catalyst under 60 min of ultrasonic vibration. The good piezocatalytic activity was ascribed to the formation of a hierarchical flower-shaped microsphere structure and the heterostructure between Fe2O3 and Bi2MoO6, which effectively separated the ultrasound-induced electron–hole pairs and suppressed their recombination. Furthermore, a potential piezoelectric catalytic dye degradation mechanism of the Fe2O3−Bi2MoO6 catalyst was proposed based on the band potential and quenching effect of radical scavengers. The results demonstrated the potential of using Fe2O3−Bi2MoO6 nanocomposites in piezocatalytic applications.

关键词: piezocatalysis     Fe2O3−Bi2MoO6     dye decomposition     ultrasonic vibration    

Photoreduction adjusted surface oxygen vacancy of BiMoO for boosting photocatalytic redox performance

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1937-1948 doi: 10.1007/s11705-023-2353-5

摘要: In this study, Bi2MoO6 with adjustable rich oxygen vacancies was prepared by a novel and simple solvothermal-photoreduction method which might be suitable for a large-scale production. The experiment results show that Bi2MoO6 with rich oxygen vacancies is an excellent photocatalyst. The photocatalytic ability of BMO-10 is 0.3 and 3.5 times higher than that of the pristine Bi2MoO6 for Rhodamine B degradation and Cr(VI) reduction, respectively. The results display that the band energy of the samples with oxygen vacancies was narrowed and the light absorption was broadened. Meanwhile, the efficiency of photogenerated electron-holes was increased and the separation and transfer speed of photogenerated carriers were improved. Therefore, this work provides a convenient and efficient method to prepare potential adjustable oxygen vacancy based photocatalysts to eliminate the pollution of dyes and Cr(VI) in water.

关键词: Bi2MoO6     oxygen vacancies     photoreduction     Cr(VI)     RhB    

Photoelectrocatalytic generation of H and S from toxic HS by using a novel BiOI/WO nanoflake array photoanode

《能源前沿(英文)》 2021年 第15卷 第3期   页码 744-751 doi: 10.1007/s11708-021-0775-7

摘要: In this paper, a photoelectrocatalytic (PEC) recovery of toxic H2S into H2 and S system was proposed using a novel bismuth oxyiodide (BiOI)/ tungsten trioxide (WO3) nano-flake arrays (NFA) photoanode. The BiOI/WO3 NFA with a vertically aligned nanostructure were uniformly prepared on the conductive substrate via transformation of tungstate following an impregnating hydroxylation of BiI3. Compared to pure WO3 NFA, the BiOI/WO3 NFA promotes a significant increase of photocurrent by 200%. Owing to the excellent stability and photoactivity of the BiOI/WO3 NFA photoanode and I/I 3 catalytic system, the PEC system toward splitting of H2S totally converted S2– into S without any polysulfide ( Sx n) under solar-light irradiation. Moreover, H2 was simultaneously generated at a rate of about 0.867 mL/(h·cm). The proposed PEC H2S splitting system provides an efficient and sustainable route to recover H2 and S.

关键词: bismuth oxyiodide (BiOI)/ tungsten trioxide (WO3) nano-flake arrays (NFA)     photoelectrocatalytic (PEC)     H2S splitting     H2     S    

All-inorganic TiO/CsAgBiBr composite as highly efficient photocatalyst under visible light irradiation

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1925-1936 doi: 10.1007/s11705-023-2344-6

摘要: In recent years, limited photocatalysis efficiency and wide band gap have hindered the application of TiO2 in the field of photocatalysis. A leading star in photocatalysis has been revealed as lead-free Cs2AgBiBr6 double halide perovskite nanocrystals, owing to its strong visible light absorption and tunable band gap. In this work, this photocatalytic process was facilitated by a unique TiO2/Cs2AgBiBr6 composite, which was identified as an S-cheme heterojunction. TiO2/Cs2AgBiBr6 composite was investigated for its structure and photocatalytic behavior. The results showed that when the perovskite dosage is 40%, the photocatalytic rate of TiO2 could be boosted to 0.1369 min–1. This paper discusses and proposes the band gap matching, carrier separation, and photocatalytic mechanism of TiO2/Cs2AgBiBr6 composites, which will facilitate the generation of new ideas for improving TiO2’s photocatalytic performance.

关键词: Cs2AgBiBr6 nanocrystals     visible-light photocatalyst     Cs2AgBiBr6/TiO2 heterojunction    

In-MOF-derived In<sub>2sub>S<sub>3sub>/Bi<sub>2sub>S<sub>3sub> heterojunction for enhanced photocatalytic

《能源前沿(英文)》 2023年 第17卷 第5期   页码 654-663 doi: 10.1007/s11708-023-0885-5

摘要: Transition metal sulfides are commonly studied as photocatalysts for water splitting in solar-to-fuel conversion. However, the effectiveness of these photocatalysts is limited by the recombination and restricted light absorption capacity of carriers. In this paper, a broad spectrum responsive In2S3/Bi2S3 heterojunction is constructed by in-situ integrating Bi2S3 with the In2S3, derived from an In-MOF precursor, via the high-temperature sulfidation and solvothermal methods. Benefiting from the synergistic effect of wide-spectrum response, effective charge separation and transfer, and strong heterogeneous interfacial contacts, the In2S3/Bi2S3 heterojunction demonstrates a rate of 0.71 mmol/(g∙h), which is 2.2 and 1.7 times as much as those of In2S3 (0.32 mmol/(g∙h) and Bi2S3 (0.41 mmol/(g∙h)), respectively. This paper provides a novel idea for rationally designing innovative heterojunction photocatalysts of transition metal sulfides for photocatalytic hydrogen production.

关键词: photocatalytic hydrogen production     wide-spectrum response     metal sulfides     MOFs derivative     heterogeneous interfacial contact    

Chemical deactivation of V

Xiaodong WU, Wenchao YU, Zhichun SI, Duan WENG

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 420-427 doi: 10.1007/s11783-013-0489-0

摘要: V O -WO /TiO catalyst was poisoned by impregnation with NH Cl, KOH and KCl solution, respectively. The catalysts were characterized by X-ray diffraction (XRD), inductively coupled plasma (ICP), N physisorption, Raman, UV-vis, NH adsorption, temperature-programmed reduction of hydrogen (H -TPR), temperature-programmed oxidation of ammonia (NH -TPO) and selective catalytic reduction of NO with ammonia (NH -SCR). The deactivation effects of poisoning agents follow the sequence of KCl>KOH>>NH Cl. The addition of ammonia chloride enlarges the pore size of the titania support, and promotes the formation of highly dispersed V=O vanadyl which improves the oxidation of ammonia and the high-temperature SCR activity. K ions are suggested to interact with vanadium and tungsten species chemically, resulting in a poor redox property of catalyst. More importantly, potassium can reduce the Br?nsted acidity of catalysts and decrease the stability of Br?nsted acid sites significantly. The more severe deactivation of the KCl-treated catalyst can be mainly ascribed to the higher amount of potassium resided on catalyst.

关键词: V2O5-WO3/TiO2     potassium chloride     poisoning     reducibility     acid sites    

Interfacial charge transfer and photocatalytic activity in a reverse designed BiO/TiO core-shell

《能源前沿(英文)》 2021年 第15卷 第3期   页码 732-743 doi: 10.1007/s11708-021-0772-x

摘要: In this study, the electronic and photocatalytic properties of core-shell heterojunctions photocatalysts with reversible configuration of TiO2 and Bi2O3 layers were studied. The core-shell nanostructure, obtained by efficient control of the sol-gel polymerization and impregnation method of variable precursors of semiconductors, makes it possible to study selectively the role of the interfacial charge transfer in each configuration. The morphological, optical, and chemical composition of the core-shell nanostructures were characterized by high-resolution transmission electron microscopy, UV-visible spectroscopy and X-ray photoelectron spectroscopy. The results show the formation of homogenous TiO2 anatase and Bi2O3 layers with a thickness of around 10 and 8 nm, respectively. The interfacial charge carrier dynamic was tracked using time resolved microwave conductivity and transition photocurrent density. The charge transfer, their density, and lifetime were found to rely on the layout layers in the core-shell nanostructure. In optimal core-shell design, Bi2O3 collects holes from TiO2, leaving electrons free to react and increase by 5 times the photocatalytic efficiency toward H2 generation. This study provides new insight into the importance of the design and elaboration of optimal heterojunction based on the photocatalyst system to improve the photocatalytic activity.

关键词: photocatalysis     core-shell     heterojunction     H2     TiO2     Bi2O3    

Effective regeneration of thermally deactivated commercial V-W-Ti catalysts

Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 38-46 doi: 10.1007/s11705-011-1167-z

摘要: An effective method for the regeneration of thermally deactivated commercial monolith SCR catalysts was investigated. Two types of regenerated solutions, namely NH Cl (1 mol/L) and dilute H SO (0.5 mol/L), were employed to treat the used catalyst. The effects of temperature and the regeneration process on the structural and textural properties of the catalysts were determined by X-ray diffraction, scanning electron microscopy, N adsorption/desorption, elemental analysis and Fourier transform infrared spectroscopy. The results suggest that the anatase phase of the used catalyst is maintained after exposure to high temperatures. Some of the catalytic activity was restored after regeneration. The catalyst regenerated by aqueous NH Cl had a higher activity than that of the catalyst treated by dilute H SO . The main reason is that the NH generated from the decomposition of NH Cl at high temperatures can be adsorbed onto the catalyst which promotes the reaction. The aggregated V O were partially re-dispersed during the regeneration process, and the intrinsic oxidation of ammonia with high concentrations of O is a factor that suppresses the catalytic activity.

关键词: V2O5-WO3/TiO2 catalysts     thermal deactivation     regeneration     NH4Cl     dilute H2SO4 solution    

Review on cryogenic technologies for CO removal from natural gas

Yujing BI, Yonglin JU

《能源前沿(英文)》 2022年 第16卷 第5期   页码 793-811 doi: 10.1007/s11708-022-0821-0

摘要: CO2 in natural gas (NG) is prone to condense directly from gas to solid or solidify from liquid to solid at low temperatures due to its high triple point and boiling temperature, which can cause a block of equipment. Meanwhile, CO2 will also affect the calorific value of NG. Based on the above reasons, CO2 must be removed during the NG liquefaction process. Compared with conventional methods, cryogenic technologies for CO2 removal from NG have attracted wide attention due to their non-polluting and low-cost advantages. Its integration with NG liquefaction can make rational use of the cold energy and realize the purification of NG and the production of by-product liquid CO2. In this paper, the phase behavior of the CH4-CO2 binary mixture is summarized, which provides a basis for the process design of cryogenic CO2 removal from NG. Then, the detailed techniques of design and optimization for cryogenic CO2 removal in recent years are summarized, including the gas-liquid phase change technique and the gas-solid phase change technique. Finally, several improvements for further development of the cryogenic CO2 removal process are proposed. The removal process in combination with the phase change and the traditional techniques with renewable energy will be the broad prospect for future development.

关键词: cryogenic CO2 removal     purification of natural gas (NG)     biogas upgrading     CH4-CO2 binary system    

Rh<sub>2sub>O<sub>3sub>/hexagonal CePO<sub>4sub> nanocatalysts for N<sub>2sub>O decomposition

Huan Liu, Zhen Ma

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 586-593 doi: 10.1007/s11705-017-1659-6

摘要: Hexagonal CePO nanorods were prepared by a precipitation method and hexagonal CePO nanowires were prepared by hydrothermal synthesis at 150 °C. Rh(NO ) was then used as a precursor for the impregnation of Rh O onto these CePO materials. The Rh O supported on the CePO nanowires was much more active for the catalytic decomposition of N O than the Rh O supported on CePO nanorods. The stability of both catalysts as a function of time on stream was studied and the influence of the co-feed (CO , O , H O or O /H O) on the N O decomposition was also investigated. The samples were characterized by N adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron microscopy, hydrogen temperature-programmed reduction, oxygen temperature-programmed desorption, and CO temperature-programmed desorption in order to correlate the physicochemical and catalytic properties.

关键词: Rh2O3     CePO4     N2O decomposition    

Recent advances in special morphologic photocatalysts for NO removal

《环境科学与工程前沿(英文)》 2022年 第16卷 第11期 doi: 10.1007/s11783-022-1573-0

摘要:

● Systematic information of recent progress in photocatalytic NO x removal is provided.

关键词: NOx removal     Photocatalyst     Graphene     C3N4     Bi-based compounds.    

标题 作者 时间 类型 操作

Cu-doped Bi/Bi<sub>2sub>WO<sub>6sub> catalysts for efficient N<sub>2sub> fixation by photocatalysis

期刊论文

Fabrication of highly efficient Bi

Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan

期刊论文

Morphology selective construction of

Maher Darwish, Ali Mohammadi, Navid Assi, Samer Abuzerr, Youssef Alahmad

期刊论文

Effective degradation of tetracycline by mesoporous Bi

Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU

期刊论文

Piezocatalytic performance of FeO−BiMoO catalyst for dye degradation

期刊论文

Photoreduction adjusted surface oxygen vacancy of BiMoO for boosting photocatalytic redox performance

期刊论文

Photoelectrocatalytic generation of H and S from toxic HS by using a novel BiOI/WO nanoflake array photoanode

期刊论文

All-inorganic TiO/CsAgBiBr composite as highly efficient photocatalyst under visible light irradiation

期刊论文

In-MOF-derived In<sub>2sub>S<sub>3sub>/Bi<sub>2sub>S<sub>3sub> heterojunction for enhanced photocatalytic

期刊论文

Chemical deactivation of V

Xiaodong WU, Wenchao YU, Zhichun SI, Duan WENG

期刊论文

Interfacial charge transfer and photocatalytic activity in a reverse designed BiO/TiO core-shell

期刊论文

Effective regeneration of thermally deactivated commercial V-W-Ti catalysts

Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE

期刊论文

Review on cryogenic technologies for CO removal from natural gas

Yujing BI, Yonglin JU

期刊论文

Rh<sub>2sub>O<sub>3sub>/hexagonal CePO<sub>4sub> nanocatalysts for N<sub>2sub>O decomposition

Huan Liu, Zhen Ma

期刊论文

Recent advances in special morphologic photocatalysts for NO removal

期刊论文